Clonogenic, myogenic progenitors expressing MCAM/CD146 are incorporated as adventitial reticular cells in the microvascular compartment of human post-natal skeletal muscle
نویسندگان
چکیده
Recent observation identifies subendothelial (mural) cells expressing MCAM, a specific system of clonogenic, self-renewing, osteoprogenitors (a.k.a, "mesenchymal stem cells") in the microvascular compartment of post-natal human bone marrow (BM). In this study, we used MCAM/CD146, as a marker to localize, isolate and assay subendothelial clonogenic cells from the microvasculature of postnatal human skeletal muscle. We show here that these cells share with their BM counterpart, anatomic position (subendothelial/adventitial) and ex vivo clonogenicity (CFU-Fs). When assayed under the stringent conditions, these cells display a high spontaneous myogenic potential (independent of co-culture with myoblasts or of in vivo fusion with local myoblasts), which is otherwise only attained in cultures of satellite cells. These muscle-derived mural cells activated a myogenic program in culture. Cultured CD146+ cells expressed the myogenic factors (Pax7, Pax3 and Myf5), NCAM/CD56, desmin as well as proteins characteristic of more advanced myogenic differentiation, such as myosin heavy chain. In vivo, these cells spontaneously generate myotubes and myofibrils. These data identify the anatomy and phenotype of a novel class of committed myogenic progenitor in human post-natal skeletal muscle of subendothelial cells associated with the abluminal surface of microvascular compartment distinct from satellite cells.
منابع مشابه
Human fetal skeletal muscle contains a myogenic side population that expresses the melanoma cell-adhesion molecule.
Muscle side population (SP) cells are rare myogenic progenitors distinct from satellite cells, the known tissue-specific stem cells of skeletal muscle. Studies in mice demonstrated that muscle SP cells give rise to satellite cells in vivo. Given that muscle SP cells are heterogeneous, it has been difficult to prospectively enrich for myogenic progenitors within the SP fraction, particularly fro...
متن کاملIsolation of myogenic stem cells from cultures of cryopreserved human skeletal muscle.
We demonstrate that subpopulations of adult human skeletal muscle-derived stem cells, myogenic endothelial cells (MECs), and perivascular stem cells (PSCs) can be simultaneously purified by fluorescence-activated cell sorting (FACS) from cryopreserved human primary skeletal muscle cell cultures (cryo-hPSMCs). For FACS isolation, we utilized a combination of cell lineage markers: the myogenic c...
متن کاملSelf-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment
The identity of cells that establish the hematopoietic microenvironment (HME) in human bone marrow (BM), and of clonogenic skeletal progenitors found in BM stroma, has long remained elusive. We show that MCAM/CD146-expressing, subendothelial cells in human BM stroma are capable of transferring, upon transplantation, the HME to heterotopic sites, coincident with the establishment of identical su...
متن کاملProspective isolation of human bone marrow stromal cell subsets: A comparative study between Stro-1-, CD146- and CD105-enriched populations
Stro-1 has proved an efficacious marker for enrichment of skeletal stem and progenitor cells although isolated populations remain heterogeneous, exhibiting variable colony-forming efficiency and osteogenic differentiation potential. The emerging findings that skeletal stem cells originate from adventitial reticular cells have brought two further markers to the fore including CD146 and CD105 (bo...
متن کاملPlacental perivascular cells for human muscle regeneration.
Perivascular multipotent mesenchymal progenitors exist in a variety of tissues, including the placenta. Here, we suggest that the abundant vasculature present in the human placenta can serve as a source of myogenic cells to regenerate skeletal muscle. Chorionic villi dissected from the mid-gestation human placenta were first transplanted intact into the gastrocnemius muscles of SCID/mdx mice, w...
متن کامل